Processing math: 100%


Let theory T defined by (N; 0, +, ×) is consistent; T is a system that can process addition and multiplication about natural numbers. This means T is theory of arithmetic.

 

T is consistent if T cannot prove formula P and ¬P simultaneously.

 

we'll use symbol  ¬, ∧, →, ↔, (, ), ∀, ∃, P0,f0,x0,P1,f2,f2 …. Symbol having subscript each means predicate, fucntion, variable symbols.

 

Define

α(σ)=n where constant symbols(¬, ∧, →, ↔, (, ), ∀, ∃) are endowed n<11, predicate symbols are prime numbers over 10, function symbols are second power of prime number over 10, and variable symbols are third power of prime number over 10.

 

β(σ1σ2σ3σ4σm)=2α(σ1)3α(σ2)Pmα(σm) where Pm means m'th prime number.

γ(x1,x2,,xn)=2β(x1)3β(x2)Pnβ(xn) where x is a formula made of finite symbols.

 

By β, we can construct a single formula by string of symbols, and by γ, we can construct any proof by enumerating formulas.

 

one can easily check each function is one-to-one; for any given number, one can find a series of formulas, symbols, and vice versa.

 

now we define a function g : {symbols∪strings∪proofs} → N where g is defined by α,β,γ.

 

g is the function which converts symbols to numbers. we'll call the number n = g(x) the godel number.

 

 

then for any natural number n, we can convert it to the combination of symbols and for given symbols, we can get a number corresponding to them. one can check this function g is one-to-one.

 

now define Pr(m,n) = m is the godel number of a proof of a formula whose godel number is n.

 

knowing m, we can construct the proof of the formula whose godel number is n.

 

 

define P(g(X))=x(Pr(x,n)(x=m)) where g(X)=n. defined predicate says there exists proof whose godel number is m and that is proof of a formula whose godel number is n. we'll call P(g(X)) X is provable.

 

now let's write x means T proves x(or x is a theorem of theory T).

 

 

For the predicate P, you can check below properties.

 

1. If X, then P(g(X))

2. P(g(XY))(P(g(X))P(g(Y)))

3. P(g(X))P(g(P(g(X))))

4. P(g(0=1))  (0=1 means 00)

 

especially for the (4), P(g(0=1)) means inconsistency of mathematical systems. since we assumed given theory T is consistent, P(g(0=1))  (it means 00) holds.

 

Look up all the formulas in T having one-free variable say n.

 

: B1(n),B2(n),B3(n),

 

 

Consider ¬P(g(Bn(n))) where n is free variable.

 

Let Bk(n)=¬P(g(Bn(n))) for some kN.

 

In particular for n=k(This particular case is secured by Godel's Diagonalization Lemma which is beyond this article's coverage), Bk(k)¬P(g(Bk(k))).

 

let A=Bk(k).

 

thus below property holds.

 

5. A¬P(g(A))

 

using (5), we can get below.

 

P(g(A))¬A (using contraposition to the (5))

P(g(P(g(A))¬A))(P(g(P(g(A))P(g(¬A))) (using (2))

 

If P(g(A))¬A, then P(g(P(g(A))¬A)) (using (1))

 

P(g(P(g(A)))P(g(¬A)) (using Modus Ponens)

 

If P(g(A)), then P(g(P(g(A)))) (using (3))

P(g(A))→⊢P(g(P(g(A)))) (using right above)

 

using above results, 6 holds.

 

 

6. P(g(A))P(g(¬A))

 

 

(6) implies A(¬A(0=1)).

 

also by (1), P(g(A(¬A(0=1)))).

 

by (2) and using Modus Ponens, P(g(A))P(g(¬A(0=1)).

 

using (2) and MP again, P(g(A))(P(g(¬A))P(g(0=1))

 

using (6) and right above, we derive (7).

 

 

7. P(g(A))P(g(0=1)))

 

 

now let A. then by (1), P(g(A)).

 

and by (7), P(g(0=1)). this contradicts (4). thus A

 

 

8. A

 

 

conversely, let ¬A. then by (5), P(g(A)). using (7), we get P(g(0=1)) which contradicts (4). thus ¬A.

 

 

9. ¬A

 

 

let ¬P(g(0=1)). then by using contraposition to (7) and MP, we get ¬P(g(A)).

 

then by (5), A which contradicts (8). thus ¬P(g(0=1))

 

 

10. ¬P(g(0=1))

 

 

above properties of theory T proves godel's incompleteness theorems.

 

using (8), (9), we get lemma for first godel's incompleteness theorem.

 

Lemma: There exists a sentence in consistent theory of natural numbers T which is not provable, whose negation is also not provable.

 

Since A and ¬A mentioned in (8), (9) are sentences, either A or ¬A is true in standard model(=N) of Peano Arithmetic, but both cannot be provable in PA. thus first incompleteness theorem holds.

 

First Godel's Incompleteness Theorem : There exists a true sentence in T which is not provable, provided that T is consistent.

 

 

during the proof, we said P(g(0=1)) means inconsistency. now we can say that negation of that, ¬P(g(0=1)), means consistency of theory T. and by (10), we got ¬P(g(0=1)) which means theory T cannot prove its own consistency. thus now we get to the second incompleteness theorem.

 

Godel's Second Incompleteness Theorem : If T is consistent, then it is not the case that ¬P(g(0=1)). that is, If T is consistent, then its consistency cannot be proved by the mechanism of T.

 

 

 

*위 증명은 IIT Ardindama Singh 교수의 강의에서 뽑아왔습니다. 불완전성을 증명하는 방식에는 크게 self-reference, diagonalization, computability theory 세 가지가 있습니다. 위의 방식은 두 번째 방식을 간략하게 서술한 것입니다. 기회가 된다면 좀더 엄밀한 방식으로 나머지 세 방식을 소개하도록 하겠습니다.


*참이라는 말과 증명가능하다는 말은 서로 다른 층위의 말입니다. 논리학 체계에서는 참/거짓은 특정한 모형 하에서 전개되는 개념입니다. 임의의 수학적 모형에서, 그 모형 하에서 다룰 수 있는 각각의 모든 문장은 참이거나 거짓입니다. 모형은 변항기호, 개체상항기호, 함수기호, 술어기호에 의미를 부여해서 모든 문장이 항상 참이거나 거짓일 수 있도록 합니다. 그런데 증명가능하다는 말은, '특정한 공리들에 추론규칙들을 적용해서 얻어낼 수 있다'는 말입니다. 말의 층위가 서로 다릅니다. 괴델정리에서 보여주는 바는 페아노 공리계를 포함하는 수학이론에서는 증명도 그 명제의 부정도 증명불가능한 경우가 항상 존재한다는 것입니다. 그러나 페아노 공리계를 만족하는 가장 단순한 모형인, 표준적인 자연수 모형(집합의 원소가 0 1 2 3 4 ... 밖에 없고 이런 모든 자연수보다 더 크거나 작은 수가 없는 체계)에서는 참이거나 거짓이겠죠. 물론 페아노 공리계보다 단순한 체계, 혹은 다른 구조를 가진 체계는 완전한 경우도 꽤 많습니다.

Posted by 괴델
,