Let theory T defined by (N; 0, +, ×) is consistent; T is a system that can process addition and multiplication about natural numbers. This means T is theory of arithmetic.
T is consistent if T cannot prove formula P and ¬P simultaneously.
we'll use symbol ¬, ∧, →, ↔, (, ), ∀, ∃, P0,f0,x0,P1,f2,f2 …. Symbol having subscript each means predicate, fucntion, variable symbols.
Define
α(σ)=n where constant symbols(¬, ∧, →, ↔, (, ), ∀, ∃) are endowed n<11, predicate symbols are prime numbers over 10, function symbols are second power of prime number over 10, and variable symbols are third power of prime number over 10.
β(σ1σ2σ3σ4…σm)=2α(σ1)3α(σ2)…Pmα(σm) where Pm means m'th prime number.
γ(x1,x2,…,xn)=2β(x1)3β(x2)…Pnβ(xn) where x is a formula made of finite symbols.
By β, we can construct a single formula by string of symbols, and by γ, we can construct any proof by enumerating formulas.
one can easily check each function is one-to-one; for any given number, one can find a series of formulas, symbols, and vice versa.
now we define a function g : {symbols∪strings∪proofs} → N where g is defined by α,β,γ.
g is the function which converts symbols to numbers. we'll call the number n = g(x) the godel number.
then for any natural number n, we can convert it to the combination of symbols and for given symbols, we can get a number corresponding to them. one can check this function g is one-to-one.
now define Pr(m,n) = m is the godel number of a proof of a formula whose godel number is n.
knowing m, we can construct the proof of the formula whose godel number is n.
define P(g(X))=∃x(Pr(x,n)∧(x=m)) where g(X)=n. defined predicate says there exists proof whose godel number is m and that is proof of a formula whose godel number is n. we'll call P(g(X)) X is provable.
now let's write ⊢x means T proves x(or x is a theorem of theory T).
For the predicate P, you can check below properties.
1. If ⊢X, then ⊢P(g(X))
2. ⊢P(g(X→Y))→(P(g(X))→P(g(Y)))
3. ⊢P(g(X))→P(g(P(g(X))))
4. ⊬P(g(0=1)) (0=1 means 0≠0)
especially for the (4), P(g(0=1)) means inconsistency of mathematical systems. since we assumed given theory T is consistent, ⊬P(g(0=1)) (it means 0≠0) holds.
Look up all the formulas in T having one-free variable say n.
: B1(n),B2(n),B3(n),⋯
Consider ¬P(g(Bn(n))) where n is free variable.
Let Bk(n)=¬P(g(Bn(n))) for some k∈N.
In particular for n=k(This particular case is secured by Godel's Diagonalization Lemma which is beyond this article's coverage), ⊢Bk(k)↔¬P(g(Bk(k))).
let A=Bk(k).
thus below property holds.
5. ⊢A↔¬P(g(A))
using (5), we can get below.
⊢P(g(A))→¬A (using contraposition to the (5))
⊢P(g(P(g(A))→¬A))→(P(g(P(g(A))→P(g(¬A))) (using (2))
If ⊢P(g(A))→¬A, then ⊢P(g(P(g(A))→¬A)) (using (1))
⊢P(g(P(g(A)))→P(g(¬A)) (using Modus Ponens)
If ⊢P(g(A)), then ⊢P(g(P(g(A)))) (using (3))
⊢P(g(A))→⊢P(g(P(g(A)))) (using right above)
using above results, 6 holds.
6. ⊢P(g(A))→P(g(¬A))
(6) implies ⊢A→(¬A→(0=1)).
also by (1), ⊢P(g(A→(¬A→(0=1)))).
by (2) and using Modus Ponens, ⊢P(g(A))→P(g(¬A→(0=1)).
using (2) and MP again, ⊢P(g(A))→(P(g(¬A))→P(g(0=1))
using (6) and right above, we derive (7).
7. ⊢P(g(A))→P(g(0=1)))
now let ⊢A. then by (1), ⊢P(g(A)).
and by (7), ⊢P(g(0=1)). this contradicts (4). thus ⊬A
8. ⊬A
conversely, let ⊢¬A. then by (5), ⊢P(g(A)). using (7), we get ⊢P(g(0=1)) which contradicts (4). thus ⊬¬A.
9. ⊬¬A
let ⊢¬P(g(0=1)). then by using contraposition to (7) and MP, we get ⊢¬P(g(A)).
then by (5), ⊢A which contradicts (8). thus ⊬¬P(g(0=1))
10. ⊬¬P(g(0=1))
above properties of theory T proves godel's incompleteness theorems.
using (8), (9), we get lemma for first godel's incompleteness theorem.
Lemma: There exists a sentence in consistent theory of natural numbers T which is not provable, whose negation is also not provable.
Since A and ¬A mentioned in (8), (9) are sentences, either A or ¬A is true in standard model(=N) of Peano Arithmetic, but both cannot be provable in PA. thus first incompleteness theorem holds.
First Godel's Incompleteness Theorem : There exists a true sentence in T which is not provable, provided that T is consistent.
during the proof, we said P(g(0=1)) means inconsistency. now we can say that negation of that, ¬P(g(0=1)), means consistency of theory T. and by (10), we got ⊬¬P(g(0=1)) which means theory T cannot prove its own consistency. thus now we get to the second incompleteness theorem.
Godel's Second Incompleteness Theorem : If T is consistent, then it is not the case that ⊬¬P(g(0=1)). that is, If T is consistent, then its consistency cannot be proved by the mechanism of T.
*위 증명은 IIT Ardindama Singh 교수의 강의에서 뽑아왔습니다. 불완전성을 증명하는 방식에는 크게 self-reference, diagonalization, computability theory 세 가지가 있습니다. 위의 방식은 두 번째 방식을 간략하게 서술한 것입니다. 기회가 된다면 좀더 엄밀한 방식으로 나머지 세 방식을 소개하도록 하겠습니다.
*참이라는 말과 증명가능하다는 말은 서로 다른 층위의 말입니다. 논리학 체계에서는 참/거짓은 특정한 모형 하에서 전개되는 개념입니다. 임의의 수학적 모형에서, 그 모형 하에서 다룰 수 있는 각각의 모든 문장은 참이거나 거짓입니다. 모형은 변항기호, 개체상항기호, 함수기호, 술어기호에 의미를 부여해서 모든 문장이 항상 참이거나 거짓일 수 있도록 합니다. 그런데 증명가능하다는 말은, '특정한 공리들에 추론규칙들을 적용해서 얻어낼 수 있다'는 말입니다. 말의 층위가 서로 다릅니다. 괴델정리에서 보여주는 바는 페아노 공리계를 포함하는 수학이론에서는 증명도 그 명제의 부정도 증명불가능한 경우가 항상 존재한다는 것입니다. 그러나 페아노 공리계를 만족하는 가장 단순한 모형인, 표준적인 자연수 모형(집합의 원소가 0 1 2 3 4 ... 밖에 없고 이런 모든 자연수보다 더 크거나 작은 수가 없는 체계)에서는 참이거나 거짓이겠죠. 물론 페아노 공리계보다 단순한 체계, 혹은 다른 구조를 가진 체계는 완전한 경우도 꽤 많습니다.
'학문 > 기타' 카테고리의 다른 글
뉴턴의 제2 법칙 ㅡ 가속도의 법칙 (0) | 2020.05.01 |
---|---|
상대주의에 관하여ㅡ삶으로의 회귀 그 이후: 삶과 이데올로기ㅡ (2) | 2015.07.17 |
상대주의에 관하여ㅡ철학·학문·이성의 붕괴와 재건축ㅡ (4) | 2014.11.24 |
괴델의 존재론적 신존재증명에 대한 해석과 비판(interpretation and criticism of Gödel's ontological proof) (25) | 2014.01.29 |