Processing math: 38%


 

 we'll prove completeness theorem. but before that, we'll look at equivalence first.

 

completeness theorem(a) : ΓφΓφ.

 

completeness theorem(b) : if Γ is consistent, then Γ is satisfiable.

 

we'll prove (a) and (b) are equivalent and finally, on later posting, (b) will be considered.

 

 

(a)(b). assume (a) holds but not (b). then Γ is consistent and Γ is unsatisfiable. that is, there does not exist s and A which satisfies all member of Γ with s. thus vacuosly, we get Γφ and Γ¬φ. then by (a), we get Γφ and Γ¬φ which is contradiction to consistency.

 

(b)(a). suppose (b) holds and but (a) does not. then Γφ and Γ. then we get \{\Gamma;\neg\varphi\} is unsatisfiable(*). using contraposition of (b), we get \Gamma;\neg\varphi is inconsistent. thus \Gamma;\neg\varphi \vdash \varphi and \Gamma;\neg\varphi\vdash\neg\varphi. thus we get \Gamma \vdash \neg\varphi\rightarrow\neg\varphi and \Gamma\vdash\neg\varphi\rightarrow\varphi using deduction theorem. then by rule T, we get \Gamma\vdash\varphi. which is contradiction.

 

* \Gamma;\neg\varphi is unsatisfiable iff \Gamma \models \varphi.

(\rightarrow). using definition of 'satisfiable' and satisfaction, \Gamma;\neg\varphi \models \varphi and \Gamma;\neg\varphi \models \neg\varphi. then \Gamma\models\neg\varphi\rightarrow\varphi and \Gamma\models\neg\varphi\rightarrow\neg\varphi. thus we get \Gamma\models\varphi

 

(\leftarrow)\Gamma\models\varphi. then \Gamma\models\varphi\rightarrow\varphi. then \Gamma\models\neg\varphi\rightarrow\neg\varphi. then we get \Gamma;\neg\varphi\models\neg\varphi. and since \Gamma\models\varphi, trivially \Gamma\models \neg\varphi\rightarrow\varphi. thus \Gamma;\neg\varphi\models\varphi. then using definition of 'satisfaction(the meaning of \models)', we get \Gamma;\neg\varphi is unsatisfiable.

 

since (a) and (b) are equivalent, it suffices to show that (b) can be proved.

'학문 > 수리논리학' 카테고리의 다른 글

FOL(8) - completeness theorem  (1) 2015.02.15
FOL(9) - compactness theorem and its equivalnce  (2) 2015.02.13
FOL(6) - soundness theorem and its equivalence  (0) 2015.02.12
FOL(5) - soundness theorem  (1) 2015.02.12
FOL(4) - syntax(2)  (2) 2015.02.12
Posted by 괴델
,