Processing math: 6%


 

soundness theorem : ΓφΓφ.

 

basic idea for proving this is same as soundness theorem for PL. give induction for deduction sequence. then case is divided into 3. φΓ, φΛ, or φ is obtained by modus ponens. first case is trivial, so is thrid(use satisfaction definition). remaining case is second. for this, we'll prove our axioms are valid.

 

 

(i) θ is valid iff xθ is valid.

 

(). this is trivial since for given d|A|, s(x|d) is also variable assignment s.

(). suppose not. then Aθ[x|d] for every d|A|. and . then by definition of 'valid', there exist some s and \mathfrak{A} such that \not\models_{\mathfrak{A}} \theta[s]. since s(x) \in \mathfrak{A}, we can construct s same as s(x|s(x)) each belongs to case in s(x|d) where d is any element in \mathfrak{A}. thus contradiction occurs.

 

using (i), we can assure any generalization of our axiom group 1-6 is valid if we can prove axiom groups. now we'll prove each axiom group is valid.

 

axiom group 1

 

we'll prove each tautolgy is valid. for this, define truth assignemnt v for every prime formulas S where v(A) =T iff \models_{\mathfrak{A}} A[s] where A is any prime formula. then extend this to \bar{v} where \bar{v}(\varphi)=T iff \models_{\mathfrak{A}} \varphi[s]. you can verify this freely(using induction).

 

using this truth assignment, it suffices to show that if \Gamma tautologically implies \varphi, then \Gamma logically implies \varphi. for this, suppose \Gamma tautologically implies \varphi and s and \mathfrak{A} are arbitrary satisfying \Gamma. then now consider above truth assignment. then trivially, \models_{\mathfrak{A}}\varphi[s]. then, since every tautology is \models \sigma tautologically, \models \sigma logically. thus axiom group 1 is valid.

 

axiom group 3

 

we'll show \forall x(\alpha \rightarrow \beta) \rightarrow (\forall x \alpha \rightarrow \forall x \beta) is valid. then it suffices to show that \{\forall x(\alpha \rightarrow \beta), \forall x \alpha \} \models \forall x \beta(for this, you've to prove \Gamma;\varphi \models \psi iff \Gamma \models \varphi \rightarrow \psi).

 

now suppose s and \mathfrak{A} are arbitrary, satisfying \forall x (\alpha \rightarrow \beta) \forall x \alpha. then \models_{\mathfrak{A}} (\alpha \rightarrow \beta)[s(x|d)] for every d \in |\mathfrak{A}| and \models_{\mathfrak{A}} \alpha[s(x|e)] for every e \in |\mathfrak{A}|. now suppose \not\models_\mathfrak{A} \forall x \beta[s]. then there exist some a \in |\mathfrak{A}| such that \not\models_{\mathfrak{A}} \beta[s(x|a)]. then since a \in |\mathfrak{A}|, we must get \models_{\mathfrak{A}} (\alpha \rightarrow \beta)[s(x|a)] and \models_{\mathfrak{A}} \alpha[s(x|a)]. then trivially \models_{\mathfrak{A}} \beta[s(x|a)] which is contradiction. hence, axiom group 3 is valid.

 

axiom group 4

 

it suffices to show that \alpha \models \forall x \alpha where x does not occur free in \alpha. now suppose any s and \mathfrak{A} satisfying \alpha. then \models_{\mathfrak{A}} \alpha[s]. then suppose d \in |\mathfrak{A}| is arbitrary, and consider variable assignemnt s(x|d) for \alpha. then since x does not occur in \alpha, and s and s(x|d) agree at all free variables except x, we can get \models_{\mathfrak{A}} \alpha[s] iff \models_{\mathfrak{A}} \alpha[s(x|d)]. thus we get \models_{\mathfrak{A}} \forall x \alpha[s]. hence axiom group 4 is valid(refer to Lemma for sentence satisfaction).

 

axiom group 5

 

we've to show x=x is valid. this is trivial from \models_{\mathfrak{A}} =t_1t_2 iff \bar{s}(t_1)=\bar{s}(t_2). since s(x)=s(x), we get \models_{\mathfrak{A}} =xx[s] for every s and \mathfrak{A}. thus axiom group 5 is valid.

 

axiom group 6

 

we've to show x=y \rightarrow (\alpha \rightarrow \alpha') is valid(\alpha is atomic formula). it suffices to show that \{x=y, \alpha \} \models \alpha'. assume that \models_{\mathfrak{A}} (x=y)[s] and \models_{\mathfrak{A}} \alpha[s]. now we'll prove s(t)=s(t') where t' is obtained from t replacing x in term t by y zero or more times.

 

(i) t is a constant symbol. then s(t)=s(t') trivial since there does not exist x that can be chngaed.

(ii) t is a variable. if t=x, then t' can be x or y. if t'=x, s(x)=s(x) trivially. if t'=y, since we assumed \models_{\mathfrak{A}}x=y[s], we get s(x)=s(y). thus s(t)=s(t').

(iii) let t_1, \ldots, t_n are terms where \bar{s}(t_i)=\bar{s}(t_i') for all i. then \bar{s}(ft_1\ldots t_n)=f(\bar(t_1), \ldots, \bar{s}(t_n)) = f(\bar{s}(t_1'), \ldots, \bar{s}(t_n')) = \bar{s}(ft_1' \ldots t_n'). thus by inductive hypothesis, we get \bar{s}(t)=\bar{s}(t') for all term t.

 

given this fact, we'll prove \alpha = \alpha'.

 

case 1 : \alpha = (t_1=t_2) where t is a term. then

\models_{\mathfrak{A}} \alpha[s] iff \models_{\mathfrak{A}} =t_1t_2[s] iff \bar{s}(t_1)=\bar{s}(t_2) iff \bar{s}(t_1')=\bar{s}(t_2') iff  \models_{\mathfrak{A}} =t_1't_2'[s] iff \models_{\mathfrak{A}} \alpha'[s].

 

case 2 : \alpha = Pt_1 \ldots t_n. then

\models_{\mathfrak{A}} \alpha[s] iff \models_{\mathfrak{A}} Pt_1 \ldots t_n[s] iff <\bar{s}(t_1), \ldots, \bar{s}(t_n)> \in P^{\mathfrak{A}} iff <\bar{s}(t_1'), \ldots, \bar{s}(t_n')> \in P^{\mathfrak{A}} iff \models_{\mathfrak{A}} Pt_1' \ldots t_n'[s] iff \models_{\mathfrak{A}} \alpha'[s].

 

this proves axiom group 6 is valid.

 

axiom group 2

 

now we'll prove axiom group 2 is valid. but this requires 2 lemmas. before proving lemmas, i'll give intuitive idea why we need some lemmas that look complicated.

 

we've to prove \models \forall x \alpha \rightarrow \alpha_{t}^{x} where t is substitutable for x in \alpha. it suffices to show that \{\forall x \alpha\} \models \alpha_{t}^{x} where t is substitutable for x in \alpha.

 

suppose s and \mathfrak{A} are arbitary such that \models_{\mathfrak{A}} \forall x \alpha[s]. then \models_{\mathfrak{A}} \alpha[s(x|d)] for every d \in |\mathfrak{A}|. for proving \models_{\mathfrak{A}} \alpha_{t}^{x}[s], it suffices to show that \models_{\mathfrak{A}} \alpha_{t}^{x}[s] iff \models_{\mathfrak{A}} \alpha[s(x|\bar{s}(t))]. then since \bar{s}(t) \in |\mathfrak{A}|, later on proof is clear.

 

and proving \models_{\mathfrak{A}} \alpha_{t}^{x}[s] iff \models_{\mathfrak{A}} \alpha[s(x|\bar{s}(t))], we must confirm each term changed by operation \alpha_{t}^{x} is same in \alpha[s(x|\bar{s}(t))]. for this, give a definition u_{t}^{x}.

 

u_{t}^{x} is a term obtained by changing variable x to t in a term u. recursively,

(i) u is a constant symbol. then u_{t}^{x}=u

(ii) if u is a variable, then u_{t}^{x}= t if u=x, and u_{t}^{x}=u if u \neq x

(iii) u_1, \ldots, u_n are terms. then (f u_1 \ldots u_n)_{t}^{x}= f {u_1}_{t}^{x} \ldots {u_n}_{t}^{x}.

 

now we claim that \bar{s}(u_{t}^{x})=\overline{s(x|\bar{s}(t))}(u).

 

 

Lemma 1 : \bar{s}(u_{t}^{x})=\overline{s(x|\bar{s}(t))}(u)

 

proof : use induction on terms(i-iii case). this is easy.

 

 

Lemma 2(substitution lemma) : if t is substitutable for x in \varphi, then \models_{\mathfrak{A}} \varphi_{t}^{x}[s] iff \models_{\mathfrak{A}} \varphi[s(x|\bar{s}(t))].

 

proof : use induction on formulas.

 

(i) \varphi is atomic formula. suppose t is substitutable for x in \varphi.

(a) \varphi is =t_1t_2. then

\models_{\mathfrak{A}} \varphi_{t}^{x}[s] iff \models_{\mathfrak{A}} (=t_1t_2)_{t}^{x}[s] iff \models_{\mathfrak{A}} ({t_1}_{t}^{x}={t_2}_{t}^{x})[s] iff \bar{s}({t_1}_{t}^{x})=\bar{s}({t_2}_{t}^{x}) iff \overline{s(x|\bar{s}(t))}(t_1)=\overline{s(x|\bar{s}(t))}(t_2)(by Lemma 1) iff \models_{\mathfrak{A}} (t_1=t_2)[\overline{s(x|\bar{s(t)})}].

 

(b)\varphi is Pt_1 \ldots t_n. you can do this similarly as (a).

 

(ii) \varphi = (\neg \phi). trivial.

(iii) \varphi = (\phi \rightarrow \psi). also trivial.

(iv) \varphi = \forall y\phi. we have 'if t is substitutable for x in \phi, then \models_{\mathfrak{A}} \phi_{t}^{x}[s] iff \models_{\mathfrak{A}} \phi[s(x|\bar{s}(t))]' by inductive hypothesis. now let t is substitutable for \varphi.

 

case 1 : x does not occur free in \varphi. then s and s(x|\bar{s}(t)) agree at all free variables in \varphi. thus by lemma for sentence satisfaction, \models_{\mathfrak{A}} \varphi_{t}^{x}[s] iff \models_{\mathfrak{A}} \varphi[s(x|\bar{s}(t))].

 

case 2 : x does occur free in \varphi. since t is substitutable for x in \varphi, we get y does not occur in t and t is substitutable for x in \phi(c.f. definition of 'substitutable'). for we have t is substitutable for x in \phi, we get \models_{\mathfrak{A}} \phi_{t}^{x}[s] iff \models_{\mathfrak{A}} \phi[s(x|\bar{s}(t))]. and x \neq y; otherwise, x does not occur free in \varphi. thus \varphi_{t}^{x}=\forall y \phi_{t}^{x}. then,

 

\models_{\mathfrak{A}} \varphi_{t}^{x}[s] iff \models_{\mathfrak{A}} \phi_{t}^{x}[s(y|d)] for every d \in |\mathfrak{A}| iff \models_{\mathfrak{A}} \phi[s(y|d)(x|\bar{s}(t))] for every d |\in \mathfrak{A}|(inductive hypothesis) iff \models_{\mathfrak{A}} \varphi[s(x|\bar{s}(t))].

 

thus soundness is proved.

 

'학문 > 수리논리학' 카테고리의 다른 글

FOL(7) - completeness and its equivalence  (0) 2015.02.13
FOL(6) - soundness theorem and its equivalence  (0) 2015.02.12
FOL(4) - syntax(2)  (2) 2015.02.12
FOL(3) - syntax(1)  (2) 2015.02.11
FOL(2) - semantics  (2) 2015.02.10
Posted by 괴델
,